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In this paper we describe an automatic analysis based on Abstract Inter-
pretation that discovers potential sharing relationships among the data
structures created by an imperative program. The analysis is able to dis-
tinguish between elements in inductively defined structures and does not
require any explicit data type declaration by the programmer. In order to
construct the abstract interpretation we introduce a new class of abstract
domains: the cofibered domains.
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1 Introduction

Alias analysis consists of automatically inferring an approximate but sound
description of pointer equality relationships during the execution of a program.
This problem turns out to be particularly difficult when we allow structured
data to be dynamically allocated on the heap and modified via destructive up-
dating. Deutsch [Deu92b,Deu94| has designed a very accurate analysis based
on the framework of Abstract Interpretation [CC77,CC92a] which can be ap-
plied to such programs, and which is able to distinguish between elements of
recursively defined data structures. In that analysis no particular assumptions
are made on the program except one: there must be explicit data type dec-
larations describing the shape of the structures to which each variable in the
program may point, the analysis algorithm strongly relying on that piece of
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information. In this paper we propose to remove this restriction by designing
an alias analysis which could be applied to untyped or dynamically typed pro-
grams without any further assumption, while still ensuring a comparable level
of accuracy.

The major difficulty lies in the impossibility of splitting up the structural
and aliasing information. The interdependence between the two is due to
the presence of destructive assignment. For instance, consider the instruction
x.f := y written in an imperative language with mutable records. Its effect
is to assign the value of the pointer y to the field £ of the record pointed to by
x. Performing a descriptive data type inference (using a grammar-based anal-
ysis [Hei94,HJ94,CC95b] for example) necessarily requires information about
all possible aliases of x in order to propagate the structural modification in-
duced by the assignment. Conversely, performing an alias analysis necessarily
requires a description of the data structures, the information being expressed
as aliasing relationships between access paths in these very structures. Since
we do not make any assumptions on the data structures and aliasing rela-
tionships created by a program during its execution, we have to perfom both
analyses simultaneously.

The core of this work consists of constructing an abstract domain for describ-
ing aliasing relationships amongst elements of recursively defined data struc-
tures which are not statically known. The idea is to represent sets of access
paths within data structures by finite-state automata, whereas alias pairs are
described by means of numerical constraints on the number of times each tran-
sition of an automaton may be used. We can then describe nonuniform aliasing
relations such as: “two lists of arbitrary lengths may only share elements lying
at the same rank”. Hence, we have to combine an infinite collection of ab-
stract domains of numerical constraints describing aliasing relationships, each
of these domains being parameterized by a finite-state automaton describing
some data structure. This construction characterizes a new class of abstract
domains, the cofibered domains [Ven96], which enjoy nice compositional prop-
erties, in particular for the design of widening operators [CC92a,CC92b].

The techniques required to reach this level of expressivity are not elementary
as one could expect. Therefore, we will try to keep the presentation as simple
as possible, sacrificing accuracy and efficiency matters to clarity whenever
necessary. As a basis for our analysis we use a simple imperative language
with mutable records and dynamic memory allocation, which is described in
Sect. 2. The language is given a storeless semantics, i.e. the memory is not
represented as a graph but as the set of access paths in the data structures
together with an aliasing relation on these paths. In Sect. 3 we define the
abstract interpretation framework that we will use to specify the analysis.
Section 4 presents the techniques of cofibered domains. This is applied in
Sect. 5 to design the abstract cofibered domain of data types and aliasing



relationships. In order to make the abstract interpretation computable, we
need to build widening operators over this domain that ensure the termination
of the analysis. This is the purpose of Sect. 6. Finally the abstract semantics
of the language is described in Sect. 7.

2 Storeless Semantics of a Simple Untyped Language

Following [Cou81], we use a simple language in which programs are described
by dynamic systems to illustrate our analysis. More precisely, a program P is
given by a set P of program points, an entry point ¢ € B, a set T C P of
terminal points and a transition relation — between program points. Given
two program points p and p’, a transition p SN p’ is labelled by an instruction
i. The program operates on a set U = {x1,..., 2, } of variables that point to
data structures built upon a signature /8 = {t;,...,t,} of records. For each
record v € R, we denote by §(v) = {f1,...,fr} the set of its fields. A record
v such that §(r) = 0 is called an atom. Note that there is no conditional
statement in our language but mere nondeterminism. This choice leads to
a very simple language which allows us to concentrate uniquely on pointer
aliasing problems. The set J of instructions is defined as follows:

Ji=1z:=newt record allocation
| z:=y variable aliasing
| z:=y.ff pointer assignment
| zxff:=vy destructive assignment,

where v € R, f € F(vr) and z,y are distinct variables of 2. The condition
on the variables simplifies the definition of the semantics but is in no way
restrictive, since any assignment instruction can be reduced to this form by
introducing auxiliary variables. A program that creates two lists of pairwise
aliased elements is given graphically in Figure 1. The set U of program vari-
ables is {z,y,2',y, z}. The signature is made of two atoms nil and symb, and
a record cons with two fields: car and cdr.

Classically we would model a memory configuration by using an environment
p and a store &. The store is a labelled graph (V, A\, E') where the vertices V'

are memory locations. The labelling function A : V' — R maps each location

to the record it contains, each edge v v of B being labelled by a field

f € F(A(v)). The environment is a function p : U — V that maps each
variable of the program to a location in the store. Jonkers [Jon81] pointed
out that such a model is too coarse since it has to take garbage collection into
account explicitly. Indeed, locations which are unreachable from the variables



X :=new nil

y :=new nil

x' :=new cons

y' :=new cons

z := new symb

x'.consffcar ;= z

x'.constfcdr :=x

y'.cons#car ;= z

y'.cons#edr :=y

Figure 1. Sample program

of the program may be present in the store. Therefore, Jonkers advocated for a
storeless representation of the memory made of the set II of all access paths in
the data structures starting from the variables of the program, together with
an equivalence relation =, the aliasing relation, on II. The aliasing relation
equates access paths that lead to the same location. All reachable locations
of the original store can thus be retrieved from the quotient set II/=. This
semantic model is particularly well-suited to our problem, since it expresses
all information about data structures and aliasing in a minimal and canonical
way. It has been successfully used by Deutsch [Deu92b,Deu94| in the design
of his alias analysis.

We now define this model more formally. Let 91 be the set of all memory
configurations. An element m of 9t is a pair (II, =) where:

— II is a prefiz-closed subset of U.X* + ¢, where ¥ = U,en{tdf | f € §(v)} is
the set of all data selectors.
— = is an equivalence relation on II, the aliasing relation, such that:



- = is right-reqular:
Vi, ell:VoeX: (r=n"Anoell) = (rloell Ar.o=r"0)
-Vrellie=rn=—=mn=c¢

The prefix-closedness condition expresses that II is a tree domain, which cor-
responds to the complete unfolding of the store in the classical model. The
empty path ¢ represents the origin of all access paths, i.e. the whole mem-
ory, and is therefore not aliased to any other path. The right-regularity of the
aliasing relation = simply means that whenever two access paths m; and m
are aliased, i.e. point to the same data structure, then all common descendants
m1.m and .7 of these paths within the shared structure are also aliased. Note
that we do not represent atomic values in this semantic model in order to keep
the structure of memory configurations simple.

We define the set € of semantic configurations of the program as (PxIM)U{Q2},
where (2 is a special configuration denoting a runtime error. The seman-
tics of an instruction i is given by a transformer of memory configurations
[i] : 9% — 9N, where 9% C 9 is the set of memory configurations to which
it makes sense to apply instruction i. Then, the semantics of the program is
defined by a transition system (€, —) as follows:

p—p' Ame M p—Sp AmgMm,

The initial semantic configuration ¢ is (e, (¢ +0, {(c,¢) } U{(z, x) | € V})),
since at the beginning of the execution of a program, no data structure is
allocated in memory and all variables are uninitialized. It now remains to
define precisely the semantics [i] of an instruction i.

The set 9t can be ordered by the componentwise inclusion which we denote
by Cgyx. It is readily checked that the intersection of any family of aliasing
relations is still an aliasing relation. Moreover, the pair Tgy = (L.X* + ¢,
0.5 x0.X*U{(e,e)}) is trivially a memory configuration and, for any m € 9,
we have m Coy Top. Therefore, the poset (9%, Con) can be endowed with the
structure of a complete lattice (9, Cop, Lon, Um, Tom, Non), the meet operation
Non corresponding to componentwise intersection. Given any prefix-closed set
IT C U.X* + ¢ of access paths and any binary relation p on IT\ {€}, we denote
by oo (11, p) the memory configuration Ngp{m € M | (II, p) Cop m}. Thus, om
can be seen as a closure operation producing a valid memory configuration
from a partial specification of access paths and aliasing relationships.

Now, let m = (II,=) be a memory configuration. The semantics of an al-
location instruction [z := newt] is defined for every memory configuration
m = (II,=) for which x € II, and maps m to (II',='), where:



- = (IT\ 2. 57) U{zxtf | | € §(v)}
- ===nN1I\zX*) x (IT\ 2.2*) U{(z,2)}

The effect of the allocation instruction is to remove all access paths starting
from x, as well as all related alias pairs, and to add the access paths corre-
sponding to the fields of record . The newly created access paths are of course
unaliased.

The semantics of all other assignment instructions can be expressed with a
single operation set(m;.0, ) on 9, where mp, 7y are access paths and o €
¥ U X. This operation is defined for every memory configuration m = (II, =)
satisfying the following conditions:

(i) {m.o,m} CII
(ii) my & [m]=z.0.2*

where [m1]= denotes the equivalence class of 71 modulo =. The memory con-
figuration set(m;.0, mo)m is given by oo (I', p), where:

~II'=(IT\ [m]z.0.X") U {m .0}

—p=E=nN{I\[m]z.0.2%) x (IT\ [m]=.0.5%)) U {(m1.0,7m2) }

Note that this definition does make sense, since we easily check that the set IT’
is prefix-closed. This operation amounts to performing a destructive assign-
ment in memory at the location pointed to by m;.0. All other paths accessing
to the same location and below, i.e. those lying in [7m]=.0.X*, are removed from
the configuration, as well as all related alias pairs. The aliasing relationship
1.0 = 79 is then enforced. The semantics of assignment instructions can thus
be given as follows:

[z :=y]m = set(x,y)m
[z := y.xtf]m = set(z, y.eif)m
[z.eff := y]m = set(z.tff, y)m

The set 2M; of memory configurations upon which the semantics of an assign-
ment instruction i is defined, is that of the corresponding set operation. Note
that a runtime error only occurs whenever condition (i) is not met, which
corresponds to accessing to unallocated memory. Since by definition, x # y
and [e]z = {€}, condition (ii) is always satisfied in the above cases.

Our purpose is to infer automatically an approximate description of the mem-
ory configurations at every point of the program during its execution. We are
therefore interested in the collecting semantics [Cou81] S = {c | ¢¢c — ¢} of
the program, which is the set of all configurations that can be derived from
the initial one with respect to the operational semantics.



Example 1 If we consider the program represented in Figure 1, every memory
configuration m such that (3,m) € S, is given by ogn(I1, p), where:

T = {z,y,2',y'}.({consfcdr"} U {consfcdr’.consfcar | 0 < i < n})U {z}
p = {(x.consficdr’.consfcar, y.consfcdr’.constcar) | 0 < i < n}

U{(z,2"),(y,v), (z.constcar,2)} ifn>1

for a certain integer n > 0 denoting the number of times the body of the loop
has been executed. This means that at the end of the program, x and y point
to two lists of the same length n with pairwise aliased elements.

We will design a computable approximation of the collecting semantics of a
program by using the techniques of Abstract Interpretation.

3 Abstract Interpretation

Abstract Interpretation [CC77,CC79,Cou81,CC92a) is a theory which provides
a number of general frameworks for defining approximations of semantic speci-
fications. A semantic specification [CC92a] is typically given by a poset (D, C),
the semantic domain of concrete properties, an endomorphism F of (D, C),
the semantic function, and an element L of D, the basis, such that the least
fixpoint lfp, F' of F' greater than or equal to L exists. The latter condition
is usually ensured by the fact that D is a complete lattice and L is a prefix-
point, i.e. L T F(L). This is what happens in our case, where the semantic
domain D associated to a program is given by the set p(( x M) U {Q})
ordered by inclusion. F is the U-complete function that maps any element
deDto{e}U{d|Ieecd:c— } and L is the empty set. A standard
result [CC77,Cou81] states that the collecting semantics S is equal to lfp, F.
Hence, by Kleene’s theorem & is given by the limit of the following iteration
sequence:

FO - J_
F,i1 =F(F,)

i.e. the least upper bound af all iterates. In general this sequence is not ulti-
mately stationary and neither is its limit finitely representable. We are there-
fore led to define a semantic approximation of S which is more abstract, in
the sense that it does not capture all properties expressed by S, but which is
on the other hand computable.

A semantic approximation is formally given by an abstract semantic speci-
fication. There are several ways to construct an abstract semantic specifica-
tion, the most well-known being the one based on semi-dual Galois connec-



tions [CC77,CCT79]. However, this model cannot be applied to our problem
because we will use regular abstractions of sets of access paths, and in general
there exists no best approximation of an arbitrary set of strings by a regular
language (see [CC95b] for more details). We will use instead a relaxed frame-
work [CC92a,CC92b] defined as follows. An abstract semantic specification is
given by a preordered set (DF, <), the abstract semantic domain, related to D
by a concretization function v : D¥ — D, an abstract basis L* € D' and an
abstract semantic function F* : D — D*, such that the following soundness
conditions are met:

- 1lC 'Y(J—u)
- Vdi, d € D : df < dy = y(df) C(dh)
~ Vd* € D' : F o y(d*) C 7y o F¥(d*)

The abstract semantics S* is obtained by mimicking the calculation of S as
the limit of an iteration sequence. In order to define this abstract iteration
sequence and to guarantee its convergence on a sound approximation of S, we
need a widening operator [Cou81,0C92a] V : D* x D — D* satisfying the
following properties:

~ Forall &, in D!, & <& Vb and &b < d' V &&.
— For every sequence (df),>o of elements of D¥, the sequence (dY ),>o induc-
tively defined as follows:

dy = d

dZH = drY Vv dBLJrl
is ultimately stationary.

The abstract iteration sequence with widening (F) )nso is thus inductively de-
fined as:

FOV = |t
Frg =Fy if F¥(F) < FY
=FYVF{(FY)  otherwise

Theorem 2 (Abstract iteration [CC92a,CC92b]) The abstract iteration
sequence with widening (FY),>o is ultimately stationary and its limit S* sat-
isfies S C v(S%). Furthermore, if N is an integer such that FY, = FY\,, then
Vn> N:FY =F) =&

We can clearly derive a semantic analyzer from this theorem. The rest of this
paper will be entirely devoted to the construction of the abstract semantic
specification of a program.



Since we are mainly interested in describing access paths and aliasing in-
formation, we first abstract D in order to forget about runtime errors. Let
DY, be the set p(f x 9M) ordered by inclusion. The concretization func-
tion v : (D4, C) — (D,C) maps any set C of configurations to C' U
{Q}. Now, suppose that we are provided with a preordered set (9%, <™)
of abstract memory configurations related to p(90%) via a concretization map
AT (O <) — (p(M), C). Given a set X and a finite collection I of
indices, we denote by [[;c; X the set of I-indexed families of elements of X,
which we will equally view as functions from [ into X. Then, we construct
D! as [yegp M, the preorder < being the pointwise extension of <™. We also
introduce a concretization function 7' : (D¥, <) —s (D}, C) which maps any
C* € D* to the set {(p,m) | m € ¥™(C*(p))}. The global concretization func-
tion 7 : (DF, ™) — (D, C) is then given by the compound map vq o v
We will design the domain 9% of abstract memory configurations stepwise by
successive approximations of o(901).

A key step in the construction of 9* consists of collapsing a set of memory
configurations into a singleton. More precisely, let zmg be the collection of all
pairs (I1, p), where II is a prefix-closed subset of U.X* + ¢ and p is a mere
binary relation on II. We denote by D(II) the diagonal of II, that is the set
{(m,m) | = € TI}. The concretization function 7% : M5 — E(IN) maps any
(I1, p) € M to {(IT',=) e M| I’ CI A = C pUD(I)}. We do not encode
reflexivity in p since this information is entirely determined by II. The preorder
<M on MY is given by pointwise set inclusion, thus making the function
monotone.

Then, we make data type information explicit by using deterministic finite-
state automata to represent sets of access paths. A deterministic finite-state
automaton A is given by a finite set () of states, an initial state 1 € () and a
collection 7" C @ x ¥ x @ of transitions labelled by data selectors, such that
for any ¢ € Q and any o € ¥, there exists at most one transition ¢ — ¢’
in T'. Since we only cope with prefix-closed sets of access paths, all states
of an automaton are terminal. For foundational reasons we suppose that the
states of all automata come from a single infinite set Q. We denote by £(.A)
the language recognized by A. Since we only consider deterministic automata,
there is a one-to-one correspondence between paths in an automaton A4 and
access paths in £(A). A morphism f : A; — Ay between A; = (Q1,141,711)
and Ay = (Q2,12,T») is a function f : @ — @9 such that the following
conditions are satisfied:

(i) f(ll) =y
(i) V(q,0,q2) € T1 = (f(q1), 0, f(q2)) € T3

Deterministic finite-state automata together with associated morphisms clear-
ly form a category Aut.



The existence of a morphism from A; to A, trivially implies that
L(A;) C L(Az). Thus, morphisms provide us with a way of comparing the
structure of automata. They will play a major role in the design of the ab-
stract domain 9%, as we will see in Sect. 5. Now, let zmﬁ be the collection
of all pairs (A, p) such that A € [[,cq Aut and p is a binary relation on
Ugess ©-L(A(z)). Then, we put (A, p;) < (Ag, pa) whenever there exist
morphisms f, : Aj(x) — As(z) for every x € U, and p; C py. We relate
im’i to Em% via a concretization function 3§ : zmﬁ — Em% which maps any
(A, p) € M to (Upey 2.L(A(2)) U {e}, pU{(c,2)}). This function is clearly
monotone with respect to <7 and <. For simplicity we have removed the
empty path ¢ from the abstract memory configuration, since it is never in-
volved in aliasing relationships but trivial ones.

An abstract aliasing relation p over a set of access paths described by a tuple A
of deterministic finite-state automata is in general not finitely representable.
Therefore, we have to design a computable approximation of p which is able
to capture non-uniform relationships between elements of recursively defined
data structures. The idea introduced by Deutsch [Deu92a,Deu92b| consisted
of using Eilenberg’s unitary-prefix monomial decomposition of a regular lan-
guage [Eil74] to represent sets of access paths. In this framework an abstract
path is given by 0¢.Bj.01 ...0,.B;.0,41 where the o; are data selectors and
the B; are regular languages, called the bases of the decomposition. The bases
characterize the recursive parts of data structures. An abstract aliasing rela-
tionship is then represented by a pair of such paths together with numerical
constraints on the number of iterations of each basis. Using this domain with
linear equality constraints [Kar76], we can describe ezactly the aliasing relation
of Example 1. However, Deutsch’s analysis strongly relies on data type infor-
mation provided by the programmer and there is no simple way of extending
it to the untyped case.

We use a similar abstraction which will moreover allow us to infer the aliasing
relation in the same time as the description of access paths. The idea is to
abstract a path in an automaton by a tuple of integers representing the number
of times each transition of the automaton occurs in the path. Therefore, if
A= (Q,i,T) is a deterministic finite-state automaton, we associate a counter
q.0 to each transition ¢ — ¢’ in T, and we denote by C(A) the set of all
these counters. For any ¢ € @), let £,(A) be the set of words of ¥* labelling a
path from ¢ to ¢ in A. For every m € L£(A) and any ¢ € C(A), we denote by
||| the number of times the transition corresponding to the counter ¢ occurs
in the path of A which is labelled by 7. Note that this definition does make
sense because, A being deterministic, the path labelled by 7 is unique.

Now, let A € [],cqy Aut be a tuple of automata where, for any z € U,

A(z) = (Qq, iy, T;). We denote by A the set of pairs 2 = ((z,q), (y,¢')) where
z,y €U, q € Q, and ¢ € Q,. We denote by C(x) the set of counters l.c and
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r.c/, where ¢ € C(A(x)) and ¢ € C(A(y)). Symbols 1 and r respectively stand
for “left” and “right”, and are used to distinguish between transition counters
of the automata associated to the left and right components of an abstract
alias pair ((x,q), (y,¢')). Note that we cannot just simply use the variable
names to make the distinction, because we may have x = y. Let p be a binary
relation on Uyey 2.L(A(x)) and r = (z.m1,y.m2) € p, where m € L,(A(x))
and m € Ly(A(y)). We put »(r) = ((z,9), (y,¢')) and we denote by 7 the
element of []icc(e)) N which maps any Le to ||m][. and any r.¢’ to [|my]|e.
Then, we define 90, to be the set of pairs (A,R), where R is an element of
[L.ca ©(IIrec N). The concretization function 73" : M, — M’ maps any
(A,R) to (A, p), where p is the set of all pairs r = (z.7,y.m2) such that
7€ R(z(r)).

Example 3 Toke U = {z,y} and R = {cons,nil}, with §(cons) = {car,
cdr} and F(nil) = (. Let A be the following automaton:

consi#cdr

consficar

Let (A,R) be an element of M, such that A(z) = A(y) = A and, putting
x=((2,9), (¥, ),

R(x) ={ve ][] N|v(liconsicdr)= v(r.i.consicdr)}
keC(sx)

The description of access paths shows that x and y point to mere list structures,
whereas the aliasing relation says that both lists may only share elements lying
at the same rank.

Difficulties arise when it comes to defining the approximation preorder <3* on
M. Intuitively, we would say that (Aj, Ry) <3 (A,, Ry) whenever there are
morphisms f, : A;(x) — Ay(x) for every x € U, such that the “image” of Ry
by these morphisms is safely approximated by Rs. Indeed, R4 is described by
using the transition counters of the automata in A, which means that we first
have to “transfer” the aliasing relation R, into the counting domain defined
by the automata in A, in order to compare it with Ry. This approximation
structure on SD?% is characteristic of a general class of abstract domains, the
cofibered domains, which we will now introduce.

11



4 Cofibered Domains

Intuitively, a cofibered domain is the result of “glueing” a collection of base
posets, each of these giving an abstract description of a same concrete domain.
The “glue” which allows us to link these posets together is defined by a cat-
egorical structure. More precisely, the existence of a morphism f : P, — Py
between posets P; and P, means that P, is an approximation of P;. Fur-
thermore, the morphism provides us with a consistent way of expressing any
abstract value of P, into the coarser domain P,. Hence, at any point of the
computation an abstract value always belongs to some base poset. A cofibered
domain can thus be seen as a dynamic poset, for the approximation structure is
allowed to change during the computation of the abstract iteration sequence,
transitions between different posets being carried through via morphisms.

We now give a formal construction of cofibered domains. We denote by Cat
the category of small categories with functors, by Proset the category of
preordered sets with monotone maps, and by Poset the category of partially
ordered sets with monotone maps. Let A : C — Poset be a functor from a
small category C into Poset. For each object A of C, we call the poset AA
the fiber of A over A, and we denote by <4 the order relation on AA. The
Grothendieck construction [BW90] associates to A the category GA defined
as follows:

(i) An object of GA is a pair (A, z) where x is an element of AA.

(ii) A morphism f : (A,z) — (B,y) is given by a morphism f: A — B
in C such that Af(z) <p y. The composition of morphisms in GA is
described in Figure 2.

Let U : Cat — Proset be the forgetful functor [Mac71] that sends every
category to its underlying preordered set obtained by collapsing each Hom-set
into one arrow.

Definition 4 A cofibered domain is a preordered set P = (FE,=) such that
there exists a functor A : C — Poset verifying P = UGA. The functor A
15 called the display of the domain and C its base.

The denomination “cofibered domain” comes from the fact that GA can be
turned into a cofibration over C. The Grothendieck construction is actually
a canonical way of building cofibrations [BW90]. In the following we will fre-
quently identify a cofibered domain with its display.

For example, the domains fmg and SD?% introduced in Sect. 3 are cofibered. The
base category Cy of fm% is given by the collection of all prefix-closed subsets
of U.X* + ¢, whereas the arrows of Cy are merely the inclusion relations
IT; C Il. The display Ag : Cy — Poset maps every II in Cy to the poset

12



f
A B I C
Poset
z
e
y ay)
B C
X f(x) gof)(x)

Figure 2. Composition of morphisms in the Grothendieck construction

(p(IT x II), C). The image of an arrow II; C Il is the canonical inclusion
map from p(IT; x IT;) into (I, x II5). Then, we readily check that (95, <2
) = UGAy. The base category C; of Smﬁ is simply the product category
[Ies Aut. The display A; : C; — Poset maps any tuple A of automata
to the poset (p(Uzeq - L(A(2)) X Uge 2.L(A(z))), C). The image of a tuple
f: A, — A, of morphisms of automata is given by the canonical inclusion
map from A;A; into A;A,. We easily check that (9018, <T) = UGA,.

Cofibered domains enjoy the important property of compositionality: an ap-
proximation v : UGA* — UGA can be constructed piecewise from approx-
imations of the components of the domain UGA, i.e. from both its base and
fibers. The piecewise approximation of cofibered domains requires a relaxed
notion of natural transformation between poset-valued functors.

Definition 5 (Lax natural transformation [Kel74]) A lax natural trans-
formation s : AF — A between two functors A, A¥ : C — Poset is a col-
lection of morphisms k4 : A¥A — AA for each object A of C such that, for
every morphism f : A — B in C, the following diagram lax commutes:
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f
—_—

A B
A—————> B
f
This can be equivalently reformulated as: Af o ka <p kg o A*f.
A fiberwise approzimation of a cofibered domain A : C — Poset is given by

an abstract domain A : C* — Poset together with a functor I' : C* — C
and a lax natural transformation x : A¥ — AT'. This is summarized by the

following diagram:
C\ /c#

Poset

' is a concretization functor which approximates the base of the domain. The
lax natural transformation is a collection of concretization functions between
the abstract fibers of A* and the concrete ones of A, whence the name of
fiberwise approximation. The lax commuting diagrams of Definition 5 express
that every morphism A f between abstract fibers is a sound approzimation of
the corresponding morphism A f between concrete ones.

Fiberwise approximation defines a notion of morphism between cofibered do-
mains. Following [Kel74], it can be shown that cofibered domains with such
morphisms form a category that we denote by CFD. The composition of two
morphisms:




is given by diagram pasting [KS74]. It is the morphism (T',&) : A" — A
defined as ' = I'l” and K4 = k4 o &'y for every object A of C". The
Grothendieck construction induces a functor G : CFD — Cat [Kel74]. The
image of a morphism (T, k) : A" — A is the functor G(T', k) : GA? — GA
that maps every object (A,z) to (['A,ka(x)) and every morphism
f:(Ax) — (B,y) to I'f : (TA,ka(z)) — (I'B,kp(y)). Therefore, the
functor UG : CFD — Proset maps fiberwise approximations of cofibered
domains to approximations between the underlying preordered sets.

For example, the concretization function 4™ : (9%, <) — (95, <T) de-
fined in Sect. 3 actually comes from a fiberwise approximation. Let
' : C; — Cy be the functor that sends any tuple of automata A to
the set Uyeqy 2.L(A(z)) U {e} and every tuple of morphisms f : A; — A,
to the inclusion arrow I'/A; C I';As. Now, let &' : Ay — A¢['; be the
lax natural transformation given as follows: for any A in C;, the function
kh  AJA — Al A maps every p € AJA to pU{(g,)}. Then, we easily
check that 7" = UG(T'}, k'). We are now able to complete the construction
of the abstract domain (9015, <I).

5 The Abstract Domain of Data Types and Aliasing Relations

At the end of Sect. 3 we noticed that the approximation structure on img
should rely on a mechanism that would allow us to “transfer” abstract aliasing
relations via morphisms of automata. This amounts to defining a method for
transferring the numerical abstraction of an access path along a morphism of
automata. Let A; = (Q1,11,71) and Ay = (Q2, 12, T») be two automata of Aut
connected by a morphism f: A; — Ay If iy =5 q1 - g1 —= ¢y is a path
in Ay, then, by definition of morphisms of automata,
i) = flq) - fgno1) == f(gn) is also a path in A;. Moreover, this path
is the unique one labelled by o7 ...0, in A,, since all automata of Aut are
deterministic. Therefore, if 7 € L(A;) C L(A;), then, for every ¢,.0 € C(Ay),
we have:

17 llg>.0 = > 1711 0

@1€f71(g2)Nq1.0€C( A1)

Hence, we can transfer the numerical abstraction of access paths from A; into
As via the morphism f by means of elementary arithmetic operations. This
simple observation will allow us to assign a cofibered structure to SD?%

More precisely, let A, : C; — Poset be the functor which sends any tu-
ple of automata A in C; to the set [T, . ¢(ITkec() N) ordered by pointwise
inclusion. Let f : A; — A, be a morphism in C;. For any element s, =
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(z,q1), (y,q))) of Ay, we denote by f(s) the element
<(l’,f($) (QI))v (y,f(y)(qll)» of Ay. Now, let f,,, : HkGC(%1) N — l:lkEC(f(m)) N
be the function which maps any tuple of integers v; to the tuple f,, (1), such
that, for all £ € C(f(5¢1)):

- ref(z)-1 ' - Yi(lg.o ifk=1loo
£, (1) (k) = 2q ef(z)~1(q)A¢ .0EC(A()) 1(L.q.0) q

Zq’ef(y)_l(q)/\q’.UGC(A(y)) 12} (I‘.q.O') if k= r.q.o

Then, the image of f by A, is the monotone map which sends any abstract
aliasing relation R € AyA; to the relation Ayf(R) defined as follows:

Viey € Ay : Aof(R)5m) = |J  {E (1) | 1 € R(5a)}

f(s01)=20

We readily check that this definition does make sense (i.e. functoriality holds).
Hence, we put (95, <) = UGA,. The concretization function
AP (0, <P — (I, <) is given by UG(Idc,, x2), where Id¢, denotes
the identity functor on C; and, for any A in C;, the function
k4 Ag A — AjA maps every R € Ay A to the set of all pairs r = (2.7, y.72)
such that # € R(s(r)). The monotonicity of x4 and the lax-commutativity
properties of k2 are straightforward. Note that all these definitions are con-
sistent with the construction of zmg started in Sect. 3. Thus, the cofibered
structure of SD?% provides us with an approximation preorder which completely
formalizes our first intuition of <"

Abstract aliasing relations are still not representable since they may involve
infinite sets of tuples of integers. Therefore, we must use a computable ap-
proximation of such sets, that is an abstract numerical domain. An abstract
numerical domain is given by a collection of lattices (Ny, Cy, Ly, Uy, Ty, My)
defined for any finite set V' of variables. These lattices also come with con-
cretization functions vy : (My,Cy) — (p(IT,ev N), €). We will concentrate
on relational domains, i.e. domains which are able to express linear constraints
between variables. Several such domains have already been designed, each of
those describing a particular kind of linear constraints : equalities [Kar76], in-
equalities [CHT8] or diophantine equations [Gra91]. We leave the choice of N/
as a parameter of our analysis scheme and we refer the reader to the original
papers for more details on the algorithmics of a particular domain. All the op-
erations on A/ that we will need in the following will be defined independently
of the abstract numerical domain. Nevertheless, we will frequently use Karr’s
domain of linear equalities [Kar76] to illustrate our constructions because of
its very intuitive structure.

Example 6 In Karr’s domain of linear equalities an element N of Ny is
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the linear variety generated by a system {ey,...,en,} of vectors of [l,cy Q
endowed with its canonical Q-vector space structure, whereas vy, (N) is the set
of integer-valued vectors lying in N.

Now, let U, V and W be finite sets of variables. Every abstract numerical
domain N associates to any linear map f : [T,ey N — ITpew N a monotone
function N'f : (Ny,Cy) — (Nw,Cw) satisfying the following soundness
condition:

VN € Ny : Vv € w(N): f(v) € yw(NF(N))

This abstraction preserves composition, that is, for any other linear map
g Muev N — Tyev N, we have N(f o g) = N f o Ng, and the image of the
identity function on [],cy N is the identity on Ny-. Moreover, the function N f
is additive:

VYN, N' € Ny : NF(N Uy N') = N F(N) U N F(N')

Example 7 We consider Karr’s domain of linear equalities. Let {eq,. .., e,}
be a system of vectors generating N. If we denote by f the linear map f lifted
to rational numbers, then N f(N) is the linear variety generated by the system
{f(e1),..., f(en)}. If N' is another variety of Ny generated by {fi,..., fm},
then N Uy N' is the linear variety generated by {e1,...,en, f1,..., fm}. Addi-
twity of N f is quite obvious.

We can then perform the last step in the construction of (9t*, <™). We denote
by Aj : C; — Poset the functor which maps any tuple of automata A to the
set [1,,ca Nope endowed with the product ordering. The image of a morphism
f: A, — A, is the monotone map which sends any Rf € A3A; to the
abstract aliasing relation Asf(R*) defined as follows:

Vo, € Ay - Asf(RF)(565) = |_|c<%2>{N?m (R¥(301)) | £(501) = 365}

Functoriality is ensured thanks to the additivity property of functions A/ f',{l.
Now, let (95, <) be the cofibered domain UGAj3;. We introduce a lax-
natural transformation x* : A3 — A, such that, for each A in C;, the
function k% : A3A — Ay A maps any R* to the aliasing relation &% (R?)
defined as follows:

Vo € A k5 (RP)(50) = vop (R (5))

2 The map f is linear if, for any w € W, there exists o, € [I,ey N and 8, € N
such that, for all v € [T,y N, f(¥)(w) = Buw + 3 ,cy Qw(v)v(v).
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Monotonicity and the lax-commutativity conditions are easily checked. We
thus obtain a concretization function 7% : (94, <) — (M4, <) by putting
AP = UG(Idc,, x?). We denote by (9%, <™) the domain (M, <) and by
AP (O, <M — (p(9M), C) the compound function 1% o 4P o ¥ o A,
which completes the construction of the domain of abstract memory configu-
rations. It only remains to design widening operators on D* before describing
the abstract semantics.

6 Widening Operators

The construction of widening operators is in general the critical part when
designing a static analysis by abstract interpretation. Indeed, these opera-
tors strongly depend on the structure of the abstract semantic domain and
there is thereby no general design methodology. A remarkable characteristic of
cofibered domains is the existence of a systematic technique for constructing
widening operators from elementary ones defined on the components of the
domain. We will describe this technique and apply it to (D, ). We first need
to extend the notion of widening to categories.

Definition 8 (Widening on a category) A widening operator V on a cat-
egory C associates apairAVl)B :A— AV B, AV;B :B— AVB
of morphisms to any two objects A and B of C, such that, for any sequence
(An)nso of objects, the w-chain (fy + AY — AY. | )nso inductively defined as
follows:

Ay = A

ATy = ATV A

an = AX V1> Ant
s ultimately pseudo-stationary, i.e. there exists a rank N > 0 such that for
alln > N, fY is an isomorphism. Moreover, we require ¥V to be stable un-

der isomorphism, that is for any isomorphism ¢ : A — A there_e)xists an
isomorphism V¢ : AVB — A'V B such that V¢ o (AV1B) = (A'V1B) o ¢.

Now, let (D, <) be a cofibered domain with display A : C — Poset. We
suppose that a widening operator V is defined on C and that furthermore
each fiber AA is provided with a widening V 4.

Theorem 9 (Widening on a cofibered domain) The operator Vg over
D constructed as follows:
(i) (A,2) Ve (B.y) = (AaVaAAT] B) o AAV, B)(y)), if AV B
s an isomorphism.
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(ii) (4,7) Ve (B,y) = (AV B,A(4 V1 B) (@) Vavs A(A V3 B)(y)), other-

1s a widening on D.

Intuitively, case (i) means that whenever the fiber is stable, i.e. A Vl) B is an
isomorphism, we transfer y into the fiber and we perform the widening with
x. In the second case, we transfer x and y into the fiber over AV B and we
make the widening therein.

Proof. Let (A,,z,)ns0 be a sequence of elements of D. Let (fY : AY —
AY. )nzo be the w-chain constructed from (A,),>o following Definition 8. Let
(An, Tn)nso be the sequence of elements of D inductively defined as (A, Tp) =
(Ag,z0) and (Apy1,Zni1) = (An,Tn) Va (Anit, Tngr), for n > 0. We first
show by induction on n that AY = A, for every n > 0. It is obviously true
for n = 0. We suppose that it is true for n. If A,,, = A,, this means that
A, V1 A, 41 is an isomorphism. By induction hypothesis AY = A, hence
An—l—l = Zn = Zn \Y An+1 = Az \% An+1 = Anv+1. If Zn-}—l = Zn \% An-i—l; then
similarly 4,1 = AY V A, 11 = AY,,. By definition of V, there exists N > 0
such that fY is an isomorphism for every n > N. We show by induction on
n that A, = Ay for every n > N. This is obvious for n = N. We suppose
that it is true for n > N. We have shown that there ex1sts an isomorphism
¢n : AY — A,. Following Definition 8, we have (A, v, Api1) o ¢p =
Vé, o f¥.But since fv is an isomorphism, 4, V1A, is also an isomorphism.
Then, by definition of Vg, 4,1 = A,, and by induction hypothesis A, ., =
Apy. Since for any n > N, A, = Ay, it follows from the definition of Vg
that there exists a sequence (T,),>y of elements of AAy, such that Z,,, =
Tn Vi, Tns1, for every n > N. But V3 is a widening operator on AAy,
hence there exists M > N such that T, = Ty, for every n > M. Therefore,
for every n > M, (A,,%,) = (Ay,Tar), which concludes the proof. O

Since D! is the product [loep ¢, it is sufficient to construct a widening op-
erator on the cofibered domain 9" and to apply it pointwise to elements of
DF. All abstract numerical domains N come with a widening operator Vy
defined on every lattice Ny . For example, in Karr’s domain of linear equal-
ities all lattices ANy have finite height, hence we can take the join Ll as a
widening. Therefore, the fiber of 9" over a tuple of automata A being given
by I1,.c 4 Ne(x), the pointwise application of operators V(.. provides us with
a widening operator on that fiber. In order to apply Theorem 9, we must also
define a widening operation V on the base category C; of M. Since C; is the
product category [[,cy; Aut, we only need to construct a widening operator
on Aut and to apply it pointwise to objects of C;.
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Fortunately, we do not have to start from scratch, since several widening
techniques for automata® have already been devised [VCL94,GdW94,CC95b)|
and can be applied here. However, these methods are all rather involved and
tedious to describe. Hence, for explanatory purposes we present an extremely
simple widening operation, which is nevertheless accurate enough to illustrate
our alias analysis on the program of Figure 1. The idea is to limit the size of
an automaton by requiring each data selector o € ¥ to be carried by at most
one transition of the automaton?*.

More formally, let A; = (Q1,11,73) and Ay = (Q2, 2, T») be two deterministic
automata. We suppose that (); and () are disjoint, which is always possible
up to bijective state renaming. Let Q = Q1 U Qy, T = Ty U Ty and ~ be
an equivalence relation on ). We say that ~ is admissible if the following
conditions are satisfied:

- il Nig
- V(ql,U,QQ),(QLOJ,q&) €T3Q1 qul /\U:U,:>Q2 Nqé

If ~ is admissible, we define the ~-join of A; and A, as:

AL O Ay = (Q/ <, [ia]~, {([¢]~, 0, [d]~) | (¢,0,¢") € T'})

This definition is consistent, since the automaton we obtain is clearly deter-
ministic. Moreover, A; and A, can be canonically embedded in A; O A, via
the morphisms which map any state ¢ to its equivalence class [¢].. If ~ is the
least admissible relation on ), we will denote by A; O A, the ~-join of A,
and A,, that we will simply call the join.

Now, we denote by ~v the least admissible equivalence relation on () satisfying
the following condition:

v(qlaaa q2)7 (Q170I7QQ) € T:0= OJ — (QI ~ qi A g2 ~ QQ)

We define A; V A, as the ~g-join of A; and A,. We readily check that every
data selector o € ¥ is carried by at most one transition of A4; V A,. Since there
are finitely many nonisomorphic automata satisfying this property, we obtain
a widening operator. The associated morphisms A; Vi Ay : A; — A, V Ay
and A; Vg) Ay 1 Ay — A1 V A, are just the canonical embeddings. Moreover,
this widening operator is clearly stable under isomorphism.

3 These methods have originally been designed for the larger class of tree au-
tomata [GS84].
4 The idea of this widening operation originated from a discussion with M. Felleisen.
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7 Abstract Semantics of the Language

In order to define the abstract semantics of our small language we first need to
introduce some basic operations. Let (A;, R}) and (A,, R5) be two abstract
memory configurations of M. Their join (A, R%) @ (Ay, RY) is the abstract
memory configuration (A, RF) defined as follows. For all + € U, A(z) =
Ai(z) OAy(z). Let f : Ay — A and g : Ay, — A be the arrows of C;
induced by the canonical embedding morphisms. For every s € A, we put

R (50) = (Asf(RY)) () Lceo (Asg(RE)) ()

Then, by construction we have (A1, RY) <™ (A, R¥) and (A, RS) <™ (A, RY).
Note that the operation @ is associative and commutative up to isomorphisms
of automata. Therefore, it will make sense to write the join of a nonempty fam-
ily of abstract memory configurations. Now, let ¢, be a state in Q. We denote
by A, the automaton ({g.},q.,0) recognizing the singleton {¢}. Let m% be
the abstract memory configuration (A, R%) where:

~ Ve eTY:A (x)=AL
- Vxe ALRﬁL(%) :Lc(%)

By convention, the join of an empty family of abstract memory configurations
is equal to mul.

We also need two additional operations on the abstract numerical domain: the

projection W and the extension ﬁ Let U and V' be finite sets of variables

such that U C V. For every v € [[,cy N, we denote by v|, the restriction

of v to [T,ey N, that is, for every v € U, we have v|;(u) = v(u). Every

abstract numerical domain comes with two functions W vy : Ny — Ny and
vy : Nu — Ny satisfying the following conditions:

- VN ¢ NV : {I/|U | S ’Yv(N)} C VU(WU,V(VD>~
- VN' e NU : {l/ € NV | V|U € ’}’U(N,)} C ’Yv(NU,V(NI)).

Example 10 We consider Karr’s domain of linear equalities. If N € Ny is
generated by the system of vectors {ei,...,e,}, then .WU,V(N) is generated by
the system {eily, ... ,enly}. If N' € Ny, then N' is the solution of a system
of linear equalities S on U. Ny (N') is the linear variety which is solution
of S onV.

The function F! will be defined by assigning an abstract semantics
[i]* : 9 — 9 to each instruction i of the language, such that the fol-
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lowing soundness condition holds:

vm! € M* : Vm € v (m?) : [iJm € v ([i]'m?)

Then, we can define the abstract semantic function F* : D — DF as follows:

VC* € DF i Vp € B FHCH(p) = P [IFCH(p)

pl %p

Assuming the soundness condition holds for every instruction of the language,
we can prove without any difficulty that the definition of F¥ is consistent:

Theorem 11 VC¥ € D : F o y(C*) C v o F¥(C¥).

If A is a tuple of automata of Cy, and s = ((z, q), (y,¢')) is an element of A,
we denote by U(s) the set {z,y}. Now, let 2 := new t be a record allocation
instruction, with §(t) = {f1, ..., f,}. The abstract semantics of this instruction
mimics the concrete one, i.e. we remove all access paths starting from z, as
well as all related alias pairs, and we add the access paths corresponding to
the fields of record v, the newly created access paths being left unaliased. More
precisely, let ¢, g1, . . ., ¢, be distinct states of Q. If m* = (A, RF) is an abstract
memory configuration, we put [z := new t]*m* = (A,, R{), where:

({q7 qiy--- aqn}a q, {(‘L tﬂfi: Qz) | 1 < [ < TL}) ifz=ux
A(2) otherwise

~-VzeU:Az) =

R Loy ifx e Yl
~ Ve A, :Ri(x) = o) ()
R’(5) otherwise

It is straightforward to check the soundness of this definition:
Theorem 12 For all m* € 9 and m € v (m*), we have
[z := new tJm € 7™ ([x := new t]'m’)
All assignment instructions are based upon the set operation, which is itself
defined by using the closure operation ggy. The latter can be expressed as the

computation of a least fixpoint over the domain zmg endowed with its canonical
structure (SDT%, <O Ugns s Lons s Moyt » T ) Of complete lattice. Indeed, let Fy,Fy,
0 0 0 0

F..1 and F,2 be the endofunctions of 9)?% such that, for every (II, p) in Em%, we
have:

= F(IL, p) = (IL, p U {(m2, m1) | (1, 72) € p})

22



= Fy(IL p) = (IL, pU {(m1, m3) | 3mp € IL: (w1, m2) € p A (T2, 73) € p})
~ Fu (I, p) = (I, pU {(7r1.0, m2.0) | (71, m2) € p A m1.0,m0.0 € 11})
— Fuo(Il, p) = (MU {m.0 | Amg € I : (w1, m2) € p A mo.0 € 11}, p)

Let F, be the Ly-complete and extensive endomorphism of SD?P) such that,
0

for any (I, p) in 9)?%, we have:

FQ(H7 P) = FS(H7 P) l—limg Ft(H7 P) l—limg Fin (Hv p) Um% Fer(H, P)

Now, let (I, p') = lfpyy ) F', be the least fixpoint of I, greater than or equal to
(I, p). Then, using standard results [CC95a], we can easily prove that g (II, p)
is equal to (IT", p’ UD(IT")). Each of the functions F, Fy, F\;1 and F,;» actually
encodes a certain part of the closure operation (symmetry, transitivity and
both aspects of right-regularity), reflexivity being deduced from the set of
access paths. We will construct an abstract counterpart of I, over M* and
compute an approximation of ggy(II, p) by using the techniques of Sect. 3.

We denote by fyé% St — fm% the compound function 4" o v o 43" (recall
that we have denoted by 9t the domain zm?,, of abstract memory configura-
tions). We introduce the endofunctions F%, Fg, Fﬁﬂ and Fﬁﬂ over 9! which
are sound approximations of the corresponding functions over SD?%. Let (A, RF)
be an element of 9MF. We mimic the exact functions, replacing every occur-
rence of a path by its numerical abstraction and adapting the definition to the
partitioning given by A.

Symmetry. F!(A,R?) is the abstract memory configuration (A, Rf) defined
as follows. Let s = ((z,¢q), (y,q')) be an element of A. We put » = ((y,q"),
(z,9))- Let s : [Iyecpery N — Ilkecpg N be the linear map which sends any v
to the tuple of integers v’ such that:

~ Vdle e C(sx) : V'(1.C) = v(r.c)
— Vr.ce C(x) : V' (r.C) =v(le)

This map simply allows us to permute the values of the left and right counters.
Then, we have

Ri(5) = R*(50) U N's(R())

Transitivity. F}(A, R?) is the abstract memory configuration (A, RY) defined
as follows. Let sz = ((2,¢), (z,¢")) be an element of A. If y € U, we denote
by @, the set of states of A(y). Now, let ¢’ € Qy, s = ((x,q), (y,¢')) and
sy = {(y,q'), (2,4")). For each ¢ € C(A(y)), we take a fresh variable v.. Let
Vi={lc|ce C(A(@))}U{ve | c € C(A(y))}, V2 = {r.c| c € C(A(2))}U{w. |
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ce€ C(A(y))} and V =V, UV, Let t1 : [Thece) N — Tlper; N be the linear
map which sends any v to the tuple of integers v/ such that:

Similarly, let ¢ : [Trec(e) N — Ilyer, N be the linear map which sends any
v to the tuple of integers v’ such that:

— Vr.ce Va1V (r.c) =v(r.c)
- Yo, € V: v (v.) = v(le)

We denote by t, () the element of N, defined as follows:

by (36) = N (N)VI,V (Mt (RF(30))) My Ny (N2(R¥(52)) )

This apparently complicated formula simply computes an approximation of
the set of elements v of N, for which there exist 14 in Ne(,.,) and v in
N¢(s) such that the following conditions hold:

— Ve e C(A(y)) : vi(r.c) = na(lc)
— Ve e C(A(x)) : v(Le) = v(Le)
— Ve € C(A(z)) : v(r.c) = va(r.c)

Then, we have

RI(2) = RE(¢) Uo) Lo (39 [ 5 € T A g/ € Q)

Right-regularity 1. F’ (A R’) is the abstract memory configuration

(A, R’,)) defined as follows. Let 36, = (2, q1), (v, ¢})) and 56, = ((, @), (y, ¢4))
be two elements of A. Note that C(3,) = C(s5;). For any o € X, we say that
s, = 7.0 whenever there exists a transition ¢; —— ¢ in A(z) and ¢, —— ¢}
in A(y). If 6, = 2.0, we denote by i, , : [Tpecin) N — Tlkecpn) N the
linear map which sends any v to the tuple of integers ¢/ such that:

- V(Lg.o) =v(lg.o) +1
~ V(r.qi.o) =v(r.q.o)+1
— V'(k) = v(k) for any other counter k

This map simply encodes the operation which consists of simultaneously in-
crementing counters l.¢;.0 and r.q].o, leaving the value of all other counters
unchanged. Then, for all »c € A, we have

Rﬁ

rrl

(50) = R*(3) Ucs UC(%){i%/,g(Rﬁ(%)) |o € XA x=x0}
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Right-regularity 2. F’,(A,R) is the abstract memory configuration

(A, R%,) defined as follows. Let = € 0. We put A(x) = (Qy, %z, Ty). Now,
let ¢ € Q, and o € . If there exists a transition ¢ —— ¢’ in A(x), we denote
by ¢, the state ¢’. Otherwise, if there exists » = ((x,q), (y,¢)) € A such that
RY(5¢) # Lo and there exists a transition ¢' —— ¢” in A(y), we denote by
¢, a fresh state of Q. Then, we have A,»(z) = (Q., s, T), where

7Q;ZQxU{QG|q€Qx/\JEE}
*TQZZTIU{((],O',(]U)|qEQ$/\U€E}

Thus, we have extended each automaton of A in order to take the transitions
induced by the aliasing relation into account. Note that each automaton A (x)
embeds in A o(z). Let i : A — A,» be the tuple of all these embedding
morphisms. Then, we have

R, = A4i(Rf)

Let FE, be the endofunction of ¥ such that, for any m# € ¥, we have
Fi(mf) = Fi(m") © Fi(m*) @ Fiy; (m*) © Fip(m?)
Theorem 13 For any m* € M*, we have

F, 0 735(mf) 3" 750 o Fh(m?)

Despite the apparent complexity of the abstract closure functions, this soud-
ness result is trivial. It is an immediate consequence of the construction of
these functions. For any m! in 9!, we denote by o4, (m?) the limit of the ab-
stract iteration sequence defined in Sect. 3 using Fg as the abstract semantic
function and m* as the abstract basis.

Now, let (A, R) be an abstract memory configuration. The abstract semantics
of instructions x := y and x := y.vff go along the same lines. Let (A,, R}) be
the element of 9" defined as follows:

A ifz=ux

~VzeU:Az) =
A(z) otherwise

J-c(%) ifz e Q](%)

-~ Vaee Ay RlE(3) =
R’(5¢) otherwise

We denote by i, the initial state of A4(y).

Variable aliasing. Let s, be the element ((z,q,), (y,i,)) of A.. We denote
by fo: [kece,) N — Ikecpe, ) N the linear map which sends any v to the
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tuple of integers v/ such that:

Vk € C(sey) : V'(k) =0

The effect of this function is to set the value of all counters in C(s¢,) to 0.
Let Eﬁ, be the abstract aliasing relation over A, such that:

o N fo(T e if 22 = 3¢,
Vce Ay RE(sg) = § 2 o T 000 v
R} () otherwise

Then, we put

[« := y]'(A,R) = oby(A., RS)

Pointer assignment. If there is no transition labelled by tff originating from
iy, this corresponds to accessing to uninitialized memory, which is a runtime
error. Therefore, we put

[+ := y.uif]F (A, RY) = mf,

Otherwise, let ¢ be the state of A(y) such that i, A, q. Let s, be the

element ((x,q1), (y,q)) of A,. We denote by fi: erC(%;,y) N— erC(%;,y) N
the linear map which sends any v to the tuple of integers v’ such that:

1 itk =ri,
VkeCGd,) /(=] l

0 otherwise

The effect of this function is to set the value of all counters in C(s4, ) to 0,

. S =t .. .
except r.i,.tif which is set to 1. Let R, be the abstract aliasing relation over
A, such that:

AR N 1T, if 2=,
Vi€ Ay R () = hi(Teee,,) 7

y
R} (%) otherwise

Then, we put

[z := y.utfF(A, RY) = ofy(As, RL)
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Destructive assignment. We finally consider the case of a destructive as-
signment instruction z.tff := y. We denote by i, the initial state of A(x). If
there is no transition labelled by tff originating from i,, this corresponds to
accessing to uninitialized memory. Therefore, we put

.18 := yJ*(A, RF) = m],

Otherwise, let ¢ be the state of A(z) such that i, i, q. Let s, be the

element ((z,¢), (y,7,)) of A. We denote by g; : ke ) N — Trecier )N
the linear map which sends any v to the tuple of integers v’ such that:

1tk = Li,.
ke CGd,) (k) =] to-lf

0 otherwise

The effect of this function is to set the value of all counters to 0, except Li,.tgf
which is set to 1. Let Rfu be the abstract aliasing relation over A such that:

RG] ) Uy, ) No1(Tear,)) if 2=,

Vi€ A: R?r(%) =
R* () otherwise

Then, we put

[[Zﬁtﬁf = y]]ﬁ(A’ Rﬁ) - Qium(Aa Rg{)

Note that we have made a conservative approximation on access paths. We
cannot do much better, since we only have may-alias information which does
not allow us to remove access paths in A. The store-based analysis of [SRW98|
is able to handle precisely such cases and to remove access paths in common
situations (what is called “strong nullification” ). However, this analysis cannot
distinguish between elements of recursively defined data structures.

The abstract semantics mimics the concrete one, so that we easily prove the
soundness of the previous constructions:

Theorem 14 The abstract semantics of every instruction i of the language s
sound, i.e. we have:

vm! € M : Vm € v (m?) : [iJm € v ([i]'m?)

Example 15 We take Karr’s domain of linear equalities and we use the sim-
ple widening defined in Sect. 6 to analyze the program described in Figure 1.
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Let (As, Rg) be the abstract memory configuration obtained at program point 3.
We find that Az(x) and As(y) are the same following automaton:

consi#cdr

consficar

RL(((z,q), (y,q))) is given by the following system of linear equalities:

l.i.consfcdr = r.i.consficdr

l.i.consfcar = r.i.consficar = 1

This means that the analysis has been able to infer the exact set of alias pairs.

8 Conclusion

We have described an analysis for untyped programs which is able to infer non-
uniform aliasing relationships between pointers nested in recursive structures.
Our main purpose was to demonstrate that such an analysis could be designed
in a simple and modular way. The abstract domain has been built stepwise
by successive abstractions of its base components. The abstract semantics
of the language has also been specified piecewise. Reusing abstract iteration
sequences to construct the abstract closure, for example, allowed us to give a
systematic construction of this rather complex operation.

However, this approach is limited by the fact that we enforce an abstract
aliasing relation to be transitively closed. An aliasing relation abstracts a set
of equivalence relations, but the union of such relations is not necessarily
transitive. For example, we cannot capture the information that a sorting
algorithm does not create aliasing between the elements of the sorted list. In
order to handle such cases, we need to modify the abstract semantics and
to replace the abstract closure by an operation which describes precisely the
new alias pairs created by a destructive assignment. This is done in Deutsch’s
analysis [Deu92a] for instance, but the design of our semantics would have
been much more complicated. We leave this extension as future work.
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